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Yang-Lee circle theorem for an ideal pseudospin-1Õ2 Bose gas in an external magnetic field
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Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
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The Yang-Lee circle theorem is extended to an ideal pseudospin-1/2 Bose gas in an external magnetic field.
It is found that the zeros of the canonical partition function are located on the unit circle in the complex activity
plane if the temperature is above the critical temperature of ideal Bose-Einstein condensation. No zeros exist
if the temperature is below the critical temperature.
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I. INTRODUCTION

Recent experiments@1,2# on dilute quantum gases o
alkali-metal atoms have produced spin-1 and pseudospin
Bose gases, respectively. One may raise an interesting q
tion: Does the celebrated Yang-Lee circle theorem hold
Bose gases? As is well known, the circle theorem w
proved originally for the ferromagnetic Ising model@3,4#.
The theorem was further extended to many ferromagn
lattice systems, such as the quantum Heisenberg mode@5#,
the classicalXY and Heisenberg models@6#, the high-spin
Ising model @7#, the multiple-spin-interaction Ising mode
@5,8#, and some continuous spin systems@9#. The circle theo-
rem was further extended to noncircular regions@10#. To our
knowledge, the circle theorem has never been extended
continuous gas. In this paper the circle theorem is exten
to an ideal Bose gas.

This paper is organized as follows. In Sec. II, an ide
pseudospin-1/2 Bose is introduced and solved in the gr
canonical ensemble. The canonical partition function is
rived. In Sec. III, the numerical results of Yang-Lee zeros
presented. In Sec. IV, four lemmas and the circle theorem
proved. In Sec. V, the zero density is determined. In Sec.
the absence of Yang-Lee zeros in the Bose-Einstein regio
proved. In Sec. VII, a discussion and summary are given

II. MODEL

Let us consider an ideal Bose gas composed
pseudospin-1/2 Bose atoms. The atoms possessLS coupling,
with a total angular momentumJ51/2. Therefore, the en
ergy spectrum of an atom in the presence of an exte
magnetic fieldHW is given by

e~pW ,MJ!5
p2

2m
2mBgMJH, MJ521/2,1/2, ~1!

wheremB is the Bohr magneton andg the Lande´ factor. The
unit of H is chosen asmBg/251. This model is exactly solv-
able in the grand canonical ensemble. As shown by Lan
and Lifshitz @11#, the thermodynamic potential is given by

V~m!5V0~m1H !1V0~m2H !, ~2!
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whereV0(m) is the thermodynamic potential of a spinle
ideal Bose gas in the absence of a magnetic field.m is the
chemical potential, andm<2H is required.m is determined
by

N5C~d!E
0

`F 1

e(p2/2m2m1H)/kBT21

1
1

e(p2/2m2m2H)/kBT21
Gpd21dp, ~3!

where C(d)52Vpd/2h2d/G(d), and h is the Planck con-
stant.

The net magnetic moment acquired by the gas is

M52~]V/]H !T,V,m

5C~d!E
0

`F 1

e(p2/2m2m2H)/kBT21

2
1

e(p2/2m2m1H)/kBT21
Gpd21dp. ~4!

In d>3, the gas undergoes a Bose-Einstein condensa
in the presence of an external magnetic fieldH at a critical
temperatureTc(H) as the chemical potential reaches t
maximum valuemmax52H. Tc(H) is given by

N5C~d!E
0

`F 1

ep2/2mkBTc21
1

1

e(p2/2m12H)/kBTc21
Gpd21dp.

~5!

For T.Tc(H), asH→0, we obtain

M /H5C~d!bE
0

` eb(p2/2m2m)

@eb(p2/2m2m)21#2
pd21dp, ~6!

whereb51/kBT. Therefore the gas is paramagnetic.
For T,Tc(H), the number of bosons condensed in t

ground state is
©2001 The American Physical Society03-1
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N0~H !5NF 12„T/Tc~H !…d/2

3

z~d/2!1(
l 51

`

lbl~e22H/kBT! l

z~d/2!1(
l 51

`

lbl~e22H/kBTc(H)! lG , ~7!

wherebl5 l 212d/2 @12#. The magnetic moment is

M ~H !5N22C~d!E
0

` 1

eb(p2/2m12H)21
pd21dp. ~8!

As H→0, M (H) exhibits a scaling law

M ~H !;Hd/221. ~9!

The spontaneous magnetization isM (H50)5N0(H
50)5N@12„T/Tc(0)…d/2#. The derivatives ofM with re-
spect toH are (]nM /]Hn)T(H50) finite for n,d/221 and
(]nM /]Hn)T(H50)5` for n>d/221. Thus the gas under
goes a magnetic phase transition atH50 and T,Tc(H
50). For d51 and 2, no Bose-Einstein condensation, a
the magnetic phase transition exists at a finite temperatu

From Eq.~2!, we obtain the grand partition function of th
gas,

J~m!5J0~m1H !J0~m2H !, ~10!

where J0(m) is the grand partition function of a spinles
ideal Bose gas. For T.Tc(H), using J(m)
5(n50

` exp(bm)Q(N), expanding Eq.~10! as a power series
in z5exp(bm), and equating the respective coefficients,
obtain the canonical partition function of the gas,

Q~N!5eNbH (
n50

N

xnQ0~n!Q0~N2n!, ~11!

wherex5exp(22bH), andQ0(n) is the canonical partition
function of an ideal Bose gas ofn spinless bosons, dete
mined by@12#

(
n50

`

znQ0~n!5expF V

ld (
l 51

`

zlbl G , ~12!

where l5h/(2pmkBT)1/2 is the thermal wavelength. Ex
panding Eq.~12! as a power series inz, and equating the
respective coefficients, we obtain@13#

Z0~0!51, Z0~1!5V, Z0~2!5Z0~1!212ldVb2 ,

Z0~3!53Z0~1!Z0~2!22Z0~1!313!l2dVb3 , . . . ,
~13!

whereZ0( l )5 l !l ldQ0( l ).
04610
d
.

III. NUMERICAL RESULTS

We have numerically checked the zeros ofQ(N) for vari-
ous values ofN, d, andV/ld. Here we list only a few.

A. NÄ5

~1! V/ld51000 (d53). The zeros are

x521,20.99935160.0360326i ,20.99711760.0758817i .
~14!

~2! V/ld510 (d53). The zeros are

x521,20.93854660.345153i ,20.73646260.676479i .
~15!

~3! V/ld50.1 (d53). The zeros are

x521,20.35620260.934409i ,0.76758360.640949i .
~16!

B. NÄ7

~1!V/ld510 (d53). The zeros are

x521,20.95581860.293959i ,

20.81858260.57439i ,20.5651560.824988i .

~17!

~2! V/ld51 (d53). The zeros are

x521,20.76415460.645034i ,

20.13526960.990809i ,0.63942460.768854i .

~18!

~3! V/ld50.1 (d53). The zeros are

x521,20.64217260.76656i ,

0.18323860.983069i ,0.8846860.466198i . ~19!

C. NÄ20

~1! V/ld51 (d53). The zeros are

x520.98953860.144274i ,20.90696460.421207i ,

20.74776260.663967i ,20.52357360.851981i ,

20.25124860.967923i ,0.047859260.998854i ,

0.34877260.937207i ,0.6238860.781521i ,

0.84378560.536681i ,0.97717760.212425i . ~20!

~2! V/ld50.2 (d53). The zeros are
3-2
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YANG-LEE CIRCLE THEOREM FOR AN IDEAL . . . PHYSICAL REVIEW E 63 046103
x520.98809360.153857i ,20.89448260.447104i ,

20.71587160.698233i ,20.46875260.88333i ,

20.17610560.984371i ,0.13457260.990904i ,

0.43362660.901093i ,0.69184560.722046i ,

0.88302160.469333i ,0.98620160.165552i . ~21!

From these examples, we see clearly that the zeros
located on the unit circleuxu51.

IV. CIRCLE THEOREM

A. Four lemmas

Before we prove the circle theorem, let us state four le
mas.

Lemma 1: If Reif is a root of Q(N), then (1/R)eif is
another root (R andf are real!.

This result is evident because of the symmetry prope
Q(N,x)5Q(N,x21).

Lemma 2: For an oddN, x521 is a root ofQ(N).
This result is evident.
Lemma 3: For N51, 2, and 3, the zeros ofQ(N) are

located on the unit circleuxu51.
Proof. For N51, we have

Q~1!5ebHQ0~0!Q~1!~11x!. ~22!

Hence the root ofQ(1) is x521.
For N52, we have

Q~2!5e2bH@~11x2!Q0~0!Q0~2!1xQ0~1!2#. ~23!

The roots ofQ(2) are

x52
Q0~1!2

2Q0~2!
6AF Q0~1!2

2Q0~2!G
2

21. ~24!

From Eq.~13!, we obtain

Q0~2!5
Q0~1!2

2
1

V

ld211d/2 . ~25!

It follows that uxu51.
For N53, we have

Q~3!5e3bH@~11x3!Q0~0!Q~3!1~x1x2!Q0~1!Q0~2!#.
~26!

The roots ofQ(3) are

x521,2
Q0~1!Q0~2!2Q0~3!

2Q0~3!

6AFQ0~1!Q0~2!2Q0~3!

2Q0~3! G2

21. ~27!

From Eq.~13! we obtain
04610
re
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Q0~1!Q0~2!2Q0~3!

2Q0~3!
5

123b3~ld/V!2

116b2~ld/V!16b3~ld/V!2 ,

~28!

with the absolute magnitude less than 1. Hence we haveuxu
51.

Lemma 4: In the classical limit, the zeros ofQ(N) are
located on the unit circlex521.

Proof. In the classical limit, Eq.~11! becomes

Q~N!5
eNbH

N!
~V/ld!N~11x!N. ~29!

Therefore, the zeros arex521.

B. Circle theorem

For N54, an analytic formula of the roots ofQ0(4) is
available. However, its mathematical expression is so co
plicated that it is impossible to proveuxu51 analytically. For
N>5, no analytic root formula is available. Therefore f
N>4, we have to seek a new method to prove the cir
theorem.

Long ago it was shown by Uhlenbeck and Gropp
@13,14,17# that the canonical partition function of two spin
less noninteracting bosons is equal to that of two interac
classical particles with the attractive potentialus(r ) at the
samem, T andV. us(r ) is given by

us~r !52kBT ln@11exp~22pr 2/l2!#. ~30!

We try to extend this result to theN-particle case: Let us
introduce a fictitious classical interacting system ofN par-
ticles, with the two-body potentialu(r ). The classical cluster
integrals of this system arebl5 l 212d/2 ( l 52, . . . ,N). This
means that the canonical partition function ofn (2<n<N)
noninteracting spinless bosons is equal to that ofn interact-
ing classical particles with the two-body potentialu(r ), at
the samem, V, andT. Sincebl is independent of temperature
u(r ) is a function ofr /l.

The condition thatu(r ) be real is too strong and may no
be always satisfied. Sinceu(r ) is fictitious, we may relax this
condition and require that exp(2bu) be real. This means tha
the negative Boltzmann weights may exist. On the ot
hand, the symmetry property of the wave functions of a Bo
system leads to a statistically effective attraction between
bosons@11#. Henceu(r ) must be negative for the great ma
jority of 0<r ,`.

In order to confirm this, let us consider the caseN53,
and use the fitting function

e2bu(r )511a1e22pr 2/l2
1a2~e22pr 2/l2

!2, ~31!

wherea1 and a2 are constants, determined bybl5 l 212d/2

( l 52 and 3). The results area152.01831 and a2
522.88022 for d53, and a154.12677 and a25
26.25354 ford52. We see thatu(r ) is positive or complex
for smallerr andu(r ) is negative for largerr.

This fictitious potential is not uniquely determined. The
exist an infinity of possible fitting functions ofu(r ) that
satisfy the requirements stated. For our latter purpose
3-3



XIAN ZHI WANG PHYSICAL REVIEW E 63 046103
may chooseu(r ) in a such way that exp(2bu)<21 for
smallerr and exp(2bu)>1 for largerr.

Using the above results, Eq.~11! becomes

Q~N!5
eNbH

N!ldN (
l 50

N
N!

l ! ~N2 l !!
Z0~ l !Z0~N2 l !xl , ~32!

with

Z0~ l !5E ddr 1•••ddr l )
1< i , j < l

e2bui j , ~33!

whereui j 5u(r i j ).
The main results of this paper are as follows.
Theorem 1: Equations~32! and ~33! imply that

Q~N!5
eNbH

N!ldNE ddr 1•••ddr N

3F )
1< i , j <N

e2bui j GYN~x, . . . ,x!, ~34!
al

04610
whereYN(x1 , . . . ,xN) is the Yang-Lee polynomial@15,16#,

YN~x1 , . . . ,xN!5(
S

xi 1
•••xi sS )i PS

)
j PS8

Ai j D , ~35!

where Ai j 5ebui j , satisfying Ai j 5Aji , 21<Ai j <1. The
summation is over all subsetsS5$ i 1 , . . . ,i s% of the setDN
5$1, . . . ,N%, andS85$ j 1 , . . . ,j N2s% is the complement of
S in DN .

Proof. Define a polynomial in variablesx1 , . . . ,xN :

BN~x1 , . . . ,xN!5 (
SPDN

~xi 1
•••xi s

!Z0~s!Z0~N2s!.

~36!

Thus Eq.~32! becomes

Q~N!5
eNbH

N!ldNBN~x, . . . ,x!. ~37!

The polynomialBN(x1 , . . . ,xN) may be expressed as
BN~x1 , . . . ,xN!5 (
SPDN

~xi 1
•••xi s

!E ddr i 1
•••ddr i sE ddr j 1

•••ddr j N2sF )
$n,m%PS

e2bunmGF )
$n8,m8%PS8

e2bun8m8G
5E ddr 1•••ddr NF )

1< i , j <N
e2bui j G (

SPDN

~xi 1
•••xi s

!F)i PS
)

j PS8
ebui j G

5E ddr 1•••ddr NF )
1< i , j <N

e2bui j GYN~x1 , . . . ,xN!. ~38!
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This completes the proof.
Theorem 2: Equation~34! implies that the zeros ofQ(N)

are located on the unit circleuxu51.
Proof. According to the Yang-Lee lemma@3,15#, Eq. ~34!

becomes

E ddr 1•••ddr NF )
1< i , j <N

e2bui j G
3)

l 51

N

~x2eif l !5Z0~N!)
l 51

N

~x2h l !, ~39!

where eif l are the roots of the Yang-Lee polynomi
YN(x, . . . ,x), andh l are the roots ofQ(N). From Eq.~39!,
we obtain

(
l 51

N E ddr 1•••ddr NF )
1< i , j <N

e2bui j Geif l5Z0~N!(
l 51

N

h l .

~40!

We see thath l are determined by
h l5
1

Z0~N!
E ddr 1•••ddr NF )

1< i , j <N
e2bui j Geif l[uh l ueiu l.

~41!

According to Lemma 1,uh l u21eiu l is another root ofQ(N).
Since there exists one to one correspondence between
roots of Q(N) and the roots of the Yang-Lee polynomi
YN(x, . . . ,x), this is impossible. Hence we haveuh l u
5uh l u21, which impliesuh l u51. This completes the proof.

Let us make a comment on our method. By introducin
two-body potential, we transform the ideal spinless Bose
into a representation of the classical interacting gas. In
way, Q(N) can be expressed as a spatial integral of
Yang-Lee polynomial, and the circle theorem follows. Sin
the zeros ofQ(N) depend on onlyQ0(n), the zeros are
independent of the two-body potentialu(r ).

V. ZERO DENSITY

Recently, the zero density of the Ising ferromagnet Fe2
was obtained experimentally by analyzing its isotherm
magnetization data@18#. Here we determine the zero densi
of our model.
3-4
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The canonical partition function of the gas is given by

Q~N!5eNbHQ0~N!)
l 51

N

~x2eiu l !. ~42!

In the thermodynamic limit, the free energy is given by

F52kBT ln Q~N!

52NH2kBT ln Q0~N!2NkBT

3E
0

p

g~u!ln~x222x cosu11!du, ~43!

whereg(u) is the zero density, with the normalization co
dition

E
0

p

g~u!du51/2. ~44!

Thus the normalized magnetization may be expressed

I ~x!5M ~H !/N

52
1

N

]F

]H
52~12x2!E

0

p g~u!

x222x cosu11
du.

~45!

From Eqs.~3! and ~4!, we obtain

Nld

V
5(

l 51

`

lblz
l cosh~bHl ! ~46!

and

Mld

V
5(

l 51

`

lblz
l sinh~bHl !. ~47!

The virial expansion ofM is

Mld

V
5(

ł 51

`

al~x!S Nld

V D l

, ~48!

with al(x
21)52al(x). Subsituting Eq.~46! into Eq. ~48!,

and comparing with Eq.~47!, we obtain

a15
~x21!

~11x!
, a258b2

x~x21!

~11x!3 , . . . . ~49!

In the high field limit, I (x) may be expanded as a pow
series ofx,

I ~x!5112p (
n51

`

gnxn, ~50!

with

gn5~2/p!E
0

p

g~u!cos~nu!du. ~51!
04610
s

Then the zero density is given by@19#

g~u!5~1/2p! lim
r→12

ReI ~reiu!

5~1/2p!
V

Nld (
ł 51

` S Nld

V D l

lim
r→12

Real~reiu!. ~52!

VI. BOSE-EINSTEIN CONDENSATION REGION

For T,Tc(H), the chemical potential ism52H. So the
free energy is

F5V1mN5V0~0!1V0~22H !2HN. ~53!

Therefore, usingF52kBT ln Q, we obtain, in the thermody
namic limit, the canonical partition function

Q~N!5eNbHJ0~0!J0~22H !

5eNbHJ0~0!)
pW

1

12x exp~2bp2/2m!
. ~54!

On the other hand, the grand partition function of an id
spinless Bose gas is given by

J0~m!5 (
n50

`

Q0~n!zn5)
pW

1

12z exp~2bp2/2m!
.

~55!

Since, for an ideal Bose gas, no hard core exists, the gr
partition functionJ0(m) is not a polynomial of the fugacity
Hence no zeros ofJ0(m) exist @20#.

It is interesting to note from Eqs.~54! and~55! thatQ(N)
as a function ofx is identical toJ0(m) as a function ofz,
besides a factor. Therefore, we deduce that in the Bo
Einstein condensation region, no zeros ofQ(N) exist.

VII. DISCUSSION AND CONCLUSION

We have introduced an ideal pseudospin-1/2 Bose
model composed of atoms that possessLS coupling with the
total angular momentumJ51/2. The model is exactly solv
able in the grand canonical ensemble. Ford>3, there exists
Bose-Einsein condensation even in an external magn
field. Below the critical temperature, spontaneous magn
zation exists. The gas undergoes a phase transition fro
paramagnetic state to a ferromagnetic state. Above the c
cal temperature, Yang-Lee zeros of the canonical partit
function exist. It is found that in this case the Yang-L
circle theorem holds. The circle theorem asserts that a m
netic phase transition is possible only atH50, which is con-
sistent with the exact solution. Below the critial temperatu
in the thermodynamic limit, no Yang-Lee zeros exist. F
d51 and 2, the circle theorem holds in the whole range
temperature.

Let us compare our model with ferromagnetic latti
models, such as the Ising model. The Ising model is
scribed by a canonical ensemble. Our model is di-scribed
a grand canonical ensemble and also by a canonical
3-5
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XIAN ZHI WANG PHYSICAL REVIEW E 63 046103
semble. The zeros of the canonical partition function of
ferromagnetic Ising model exist, either above or below
critical temperature. The thermodynamic properties are
termined by Yang-Lee zeros. In the grand canonical
semble, no Yang-Lee zeros of the grand partition function
our model exist. In the canonical ensemble, above the crit
temperature of the Bose-Einstein condensation, the zero
the canonical partition function of our model exist. The th
modynamic properties are determined by Yang-Lee ze
However, below the critical temperature, no zeros of
04610
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e

canonical partition function of our model exist. Furthermo
the magnetic phase transition in the ferromagnetic Is
model is related to the Yang-Lee singularity~the positive
real Yang-Lee zeros!. Above the critical temperature, th
magnetic phase transition in our model is also related to
Yang-Lee singularity@the positive real Yang-Lee zeros o
Q(N)#. However, below the critical temperature, the ma
netic phase transition is related to the Bose-Einstein sin
larity „@12x exp(2bp2/2m)#215` when x51(H50) and
p50…. The asymmetry of the singularity property is caus
by ideal Bose-Einstein condensation.
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