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Yang-Lee circle theorem for an ideal pseudospin/2 Bose gas in an external magnetic field
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The Yang-Lee circle theorem is extended to an ideal pseudospin-1/2 Bose gas in an external magnetic field.
It is found that the zeros of the canonical partition function are located on the unit circle in the complex activity
plane if the temperature is above the critical temperature of ideal Bose-Einstein condensation. No zeros exist
if the temperature is below the critical temperature.
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[. INTRODUCTION where Qy(u) is the thermodynamic potential of a spinless
ideal Bose gas in the absence of a magnetic figlds the
Recent experiment$l,2] on dilute quantum gases of chemical potential, ang<—H is required.u is determined
alkali-metal atoms have produced spin-1 and pseudospin-142y
Bose gases, respectively. One may raise an interesting ques-
tion: Does the celebrated Yang-Lee circle theorem hold for " 1
Bose gases? As is well known, the circle theorem was N:C(d)f .
proved originally for the ferromagnetic Ising modd,4]. 0 [ e(P2m=ptH)kgT 1
The theorem was further extended to many ferromagnetic
lattice systems, such as the quantum Heisenberg ni&del + 1
the classicalXY and Heisenberg mode[$], the high-spin e(P2m=p—H)/kgT _ 1
Ising model[7], the multiple-spin-interaction Ising model
[5,8], and some continuous spin syste@k The circle theo-
rem was further extended to noncircular regipbg]. To our
knowledge, the circle theorem has never been extended to
continuous gas. In this paper the circle theorem is extende
to an ideal Bose gas.

} pd~tdp, 3

where C(d)=2V#¥?h~9T(d), and h is the Planck con-
sfant.
d The net magnetic moment acquired by the gas is

This paper is organized as follows. In Sec. Il, an ideal M=—(3Q/dH)ty,,
pseudospin-1/2 Bose is introduced and solved in the grand
canonical ensemble. The canonical partition function is de- =C(d)fw 1
rived. In Sec. Ill, the numerical results of Yang-Lee zeros are 0 | e(P?r2m=u—H)/kgT _
presented. In Sec. IV, four lemmas and the circle theorem are
proved. In Sec. V, the zero density is determined. In Sec. VI, _ 1 d-14 4
the absence of Yang-Lee zeros in the Bose-Einstein region is opZzm kgt _q P 9P )

proved. In Sec. VI, a discussion and summary are given.

In d=3, the gas undergoes a Bose-Einstein condensation
Il. MODEL in the presence of an external magnetic fieldat a critical
mperatureT.(H) as the chemical potential reaches the

. . e
Let us consider an ideal Bose gas composed Oknaximum valueu .= —H. T(H) is given by

pseudospin-1/2 Bose atoms. The atoms pods8soupling,
with a total angular momenturd=1/2. Therefore, the en-

ergy spectrum of an atom in the presence of an external * 1 a1
s N=C(d) > +— p®~*dp.
magnetic fieldH is given by 0 | @P2mkgTe_ 1 @(P“2m+2H)/kgTe_ 1
)
- p?
e(p,My)=5 -~ uegMH, M,;=-1/21/2, (1) For T>T,(H), asH—0, we obtain
. w  @B(pPr2m—p)
where ug is the Bohr magneton argithe Landefactor. The M/H=C(d d-1y 6
. . _ . . ( )B 2/2 _ 2p pi ( )
unit of H is chosen aggg/2=1. This model is exactly solv- 0 [ef(PT2m=n) 1]

able in the grand canonical ensemble. As shown by Landau

and Lifshitz[11], the thermodynamic potential is given by i ,
where 8= 1/kgT. Therefore the gas is paramagnetic.

For T<T.(H), the number of bosons condensed in the
Q(u)=Qq(u+H)+Qo(—H), (2  ground state is
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No(H)=N| 1= (T/T¢(H))"?

g(d/2)+|2 Ib, (e~ 2H/keT)!
X xfl ,
g(o|/2)+|21 b, (e~ 2M/keTe(H))!

()

whereb,=1"1"92[12]. The magnetic moment is

s}

M(H)IN—ZC(d)fo m

pd~tdp. (8

As H—0, M(H) exhibits a scaling law

M(H)~H¥2"1, (9)
The spontaneous magnetization M(H=0)=Ngy(H
=0)=N[1—(T/T¢(0))%?]. The derivatives ofM with re-
spect toH are ("M/dH")+(H=0) finite forn<d/2—1 and
(0"M/9H™)1(H=0)=0 for n=d/2— 1. Thus the gas under-
goes a magnetic phase transition Fit=0 and T<T.(H
=0). Ford=1 and 2, no Bose-Einstein condensation, and

the magnetic phase transition exists at a finite temperature.

From Eq.(2), we obtain the grand partition function of the
gas,

E(m)=Eo(u+H)Eo(n—H), (10)
where Ey(u) is the grand partition function of a spinless
ideal Bose gas. For T>T,(H), wusing E(u)
=3._oexpBu)Q(N), expanding Eq(10) as a power series
in z=exp(Bw), and equating the respective coefficients, we
obtain the canonical partition function of the gas,

N
Q(N)=eNﬂHn§0x“Qom)Qo(N—n), (12)

wherex=exp(—28H), andQy(n) is the canonical partition
function of an ideal Bose gas af spinless bosons, deter-
mined by[12]

12

. v
2 z”Qo<n>=exp[F 2, z'b.}

n=0 =1

where A =h/(27mkgT)¥? is the thermal wavelength. Ex-
panding Eq.(12) as a power series i@, and equating the
respective coefficients, we obtdih3]
Zy(0)=1, Zo(1)=V, Zo(2)=Zo(1)*+2\Vhy,
Zo(3)=3Z4(1)Zo(2)—2Zo(1)3+3IN%%Vbs, . . .,
(13

whereZq(1)=11A"9Qq(1).
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Ill. NUMERICAL RESULTS

We have numerically checked the zerogx{iN) for vari-

ous values oN, d, andV/\9. Here we list only a few.

A. N=5
(1) VIN9=1000 (d=3). The zeros are

=—1,-0.9993510.0360326, —0.9971170.0758817.
(14)

(2) VIN9=10 (d=3). The zeros are

x=—1,-0.938546:0.345158, —0.736462- 0.676479.
(15

(3) VINY=0.1 (d=3). The zeros are

x=—1,—0.356202-0.934409,0.767583 0.640949.

(16)
B.N=7
(1)V/IN9=10 (d=3). The zeros are
x=—1,—0.9558180.293959,
—0.818582-0.57439,— 0.56515+0.824988.
(17
(2) VINY=1 (d=3). The zeros are
x=—1,—0.764154- 0.645034,
—0.135269- 0.990809,0.639424- 0.768854.
(18
(3) VINY=0.1 (d=3). The zeros are
x=—1,—0.642172-0.76656,
0.183238-0.983069,0.88468-0.466198. (19

C.N=20
(1) VINY=1 (d=3). The zeros are
X=—0.989538-0.144274,—0.906964- 0.421207,
—0.747762-0.663967,—0.523573-0.851981,
—0.251248-0.9679238,0.0478592- 0.998854,
0.348772-0.937207,0.62388-0.781521,

0.843785-0.536681,0.977177-0.212425. (20)

(2) VIN9=0.2 (d=3). The zeros are
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x=—0.988093-0.153857,—0.894482- 0.447104,
—0.7158710.698238, — 0.468752-0.88333,
—0.176105-0.984371,0.134572-0.990904,
0.433626-0.9010938,0.691845-0.722046,
0.8830210.469338,0.986201 0.165552. (21
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Qo(1)Qo(2)—Qq(3) 1-3by(\YV)?
2Q,(3) © 14+6b,(NYV)+6by(NYV)?’
(28

with the absolute magnitude less than 1. Hence we have
=1.

Lemma 4 In the classical limit, the zeros d@(N) are
located on the unit circle=—1.

Proof. In the classical limit, Eq(11) becomes

From these examples, we see clearly that the zeros are

located on the unit circléx|=1.

IV. CIRCLE THEOREM

A. Four lemmas

Before we prove the circle theorem, let us state four lem-

mas.
Lemma 1If R€? is a root of Q(N), then (1R)e'? is
another root R and ¢ are real).

NSH

Ni (VINHN(L+x)N. (29)

Q(N)=
Therefore, the zeros are= —1.

B. Circle theorem

For N=4, an analytic formula of the roots @q(4) is
available. However, its mathematical expression is so com-
plicated that it is impossible to proyg| =1 analytically. For

This result is evident because of the symmetry propertyN\=5, no analytic root formula is available. Therefore for

Q(N,X)=Q(N,x™ ).

Lemma 2 For an oddN, x=—1 is a root ofQ(N).

This result is evident.

Lemma 3 For N=1, 2, and 3, the zeros d@(N) are
located on the unit circléx|=1.

Proof. For N=1, we have

Q(1)=€Qp(0)Q(1)(1+x). (22

Hence the root of)(1) isx=—1.
ForN=2, we have

Q(2)=e*"[(1+x%)Qo(0)Qq(2) +xQu(1)%]. (23

The roots ofQ(2) are

_ Qo) [Qo(l) } B
= 72042~ V|2042)) T 24
From Eq.(13), we obtain
Q(1)? Vv
Qo(2)=""5— + yayrran- (25

It follows that|x|=1.
For N=3, we have

Q(3)=e*"[(1+x%)Qo(0)Q(3) + (x+x*)Qo(1)Qo(2)].

(26)
The roots ofQ(3) are
_ 4 Q(1)Q0(2)~Qu(3)
' 2Qu(3)
+ [[Q0(1)Q0(2)—Qu(3)]?
- \/ 2Q(3) -1 (27)

From Eq.(13) we obtain

N=4, we have to seek a new method to prove the circle
theorem.

Long ago it was shown by Uhlenbeck and Gropper
[13,14,17 that the canonical partition function of two spin-
less noninteracting bosons is equal to that of two interacting
classical particles with the attractive potentig(r) at the
samem, T andV. ug(r) is given by

ug(r)=—kgT In[1+exp(— 27r2/A\?)]. (30)

We try to extend this result to the-particle case: Let us
introduce a fictitious classical interacting systemNofar-
ticles, with the two-body potential(r). The classical cluster
integrals of this system afg=1"1"92 (1=2, ... N). This
means that the canonical partition functionro{2<n=<N)
noninteracting spinless bosons is equal to tham ofteract-
ing classical particles with the two-body potentiglr), at
the samem, V, andT. Sinceb, is independent of temperature,
u(r) is a function ofr/\.

The condition that(r) be real is too strong and may not
be always satisfied. Sinegr) is fictitious, we may relax this
condition and require that exp(8u) be real. This means that
the negative Boltzmann weights may exist. On the other
hand, the symmetry property of the wave functions of a Bose
system leads to a statistically effective attraction between the
bosong 11]. Henceu(r) must be negative for the great ma-
jority of 0r<<oo,

In order to confirm this, let us consider the cadde 3,
and use the fitting function

232 252
e—ﬁu(r):1+ale—2wr IN +a2(e—21-rr IN )2, (31)

where a; and «, are constants, determined by=|"1"92
(I=2 and 3). The results areyr;=2.01831 and a,
=-—2.88022 for d=3, and «@,=4.12677 and a,=
—6.25354 ford=2. We see thati(r) is positive or complex
for smallerr andu(r) is negative for larger.

This fictitious potential is not uniquely determined. There
exist an infinity of possible fitting functions afi(r) that
satisfy the requirements stated. For our latter purpose we
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may chooseu(r) in a such way that exp{Bu)<—1 for ~ WhereYy(Xs, ... Xy) is the Yang-Lee polynomigl15,16],
smallerr and exp( Bu)=1 for largerr.
Using the above results, EGLL) becomes Ya(Xq, ... ,XN):ES X, S( HS 1T AI]) (35)
NgH N lesjeg
QN)= NININ < 2 ||(|\| ZO(I)ZO(N_l)X (32 where A,]—eﬁuu satisfying Ajj=A;i, —1<A;<1. The
summation is over all subse®&={i, ... ,g} of the setAy
with ={1,... N}, andS'={j, ... ,jn_s Is the complement of
SinAy.
Zo(|):f ddrl- ..d% H o Bui, (33) Proof. Define a polynomial in variables,, ... Xy:
I=si<j=lI
Whereuij :u(rij)_ BN(Xla e ,XN):SEA (Xil' : 'XiS)ZO(S)ZO(N_S)-
The main results of this paper are as follows. " (36)
Theorem 1Equations(32) and(33) imply that
\ Thus EQ.(32) becomes
eNAH
Q(N):Wﬂf ddr1~-~ddr NBH
QIN) = GrxasBu(X, - .. X). (37)
<[ T e Puilyn(x, ... x), (34) .
1<i<j<N The polynomialBy(X4, - . . Xn) May be expressed as
|
Bau(Xg, oo Xp)= Dy (XX )f ddr; .. -ddr; f ddr;, - --d; { [T e Aum T e puwm
SEhy 1 s 1 s 1 N=S| (n<mjes ' <mes
:j ddrl...ddr H e~ Buijj 2 (Xi = X) H H eBuij
1=i<j=N Sedy ! Sliesjcy
zf dirp- - diryl TT e Puii|Yn(Xq, ... Xn). (39
1<i<j=N

This completes the proof.

Theorem 2Equation(34) implies that the zeros d@(N)
are located on the unit circle|=1.

Proof. According to the Yang-Lee lemnj&,15], Eq.(34)

becomes
f ddry---d9ry

N N
xlﬂl (X—ei¢'):Zo(N)|Hl (x—m), (39

H e~ Buij
1<i<j=N

where e€'¢ are the roots of the Yang-Lee polynomial
Yn(X, ... X), and 5, are the roots oQ(N). From Eq.(39),
we obtain

H e~ Buij

1<i<j=N

N
e=2(N) 2, -
(40)

N
21 J ddry---dy

We see thaty, are determined by

I1

1=<i<j=N

eBuij}ei¢IE| 77||eml_

(41)

1
=—— | d%,---d%
7 Zo(N)f S

According to Lemma 1} 7|~ e'% is another root ofQ(N).
Since there exists one to one correspondence between the
roots of Q(N) and the roots of the Yang-Lee polynomial
Yn(X, ... X), this is impossible. Hence we haviey|
=|m| ™%, which implies| 7| =1. This completes the proof.
Let us make a comment on our method. By introducing a
two-body potential, we transform the ideal spinless Bose gas
into a representation of the classical interacting gas. In this
way, Q(N) can be expressed as a spatial integral of the
Yang-Lee polynomial, and the circle theorem follows. Since
the zeros ofQ(N) depend on onlyQq(n), the zeros are
independent of the two-body potentia(r).

V. ZERO DENSITY

Recently, the zero density of the Ising ferromagnet FeCl
was obtained experimentally by analyzing its isothermal
magnetization datgl8]. Here we determine the zero density
of our model.
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The canonical partition function of the gas is given by

N
Q<N>=eNﬁHQo<N>Iljl (x—elf). (42)

In the thermodynamic limit, the free energy is given by
F=—kgTINnQ(N)
—NH—=KgT InQu(N)—

NkgT
x Fg(g)m(xz—zx cos6+1)do, 43)
0

whereg( ) is the zero density, with the normalization con-
dition

f”g(a)dazl/z. (44)
0

Thus the normalized magnetization may be expressed as

[(x)=M(H)/N
1 oF ™ g(6)
__ - _ 2 o
NgH - 2(Lx )L x2— 2% c0sf+ 1
(45
From Egs.(3) and(4), we obtain
NAY
TZE b,z' cosi BHI) (46)
=1
and
MY
—— = Ib,Z'sinh(BHI). (47)
vV =
The virial expansion oM is
MY N)\d
~V & a0 ) , (48)

with a,(x " 1)=—a,(x). Subsituting Eq(46) into Eq. (48),
and comparing with Eq47), we obtain

_(x-1)

M1y @

x(x 1)

In the high field limit, 1 (x) may be expanded as a power
series ofx,

[

[(X)=1+27 >, g.x", (50)
n=1
with

9= (2/m) fowg(a)cos{na)de. (51)
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Then the zero density is given §§9]
g(#)=(1/2m) lim Rel(re'?)

r—1-

o0

dy |
1/277)—dZ ( A ) lim Rea(re'?). (52

r—1-

VI. BOSE-EINSTEIN CONDENSATION REGION

For T<T.(H), the chemical potential iz=—H. So the
free energy is
F=Q+uN=Qy0)+Qq(—2H)—HN. (53
Therefore, using-= —kgT In Q, we obtain, in the thermody-
namic limit, the canonical partition function

Q(N)=e"PME((0)Eo(—2H)

H 1
0(0)5 1—xexp(—Bp2/2m)’ (54

On the other hand, the grand partition function of an ideal
spinless Bose gas is given by

1
H 1—zexp — Bp3/2m)°

III

of Z o(n)z"=

(55

Since, for an ideal Bose gas, no hard core exists, the grand
partition function=Z y( ) is not a polynomial of the fugacity.
Hence no zeros oEq(u) exist[20].

It is interesting to note from Eq$54) and(55) thatQ(N)
as a function ofx is identical to= () as a function ofz,
besides a factor. Therefore, we deduce that in the Bose-
Einstein condensation region, no zeroSfN) exist.

VII. DISCUSSION AND CONCLUSION

We have introduced an ideal pseudospin-1/2 Bose gas
model composed of atoms that posseSscoupling with the
total angular momenturd=1/2. The model is exactly solv-
able in the grand canonical ensemble. Ber3, there exists
Bose-Einsein condensation even in an external magnetic
field. Below the critical temperature, spontaneous magneti-
zation exists. The gas undergoes a phase transition from a
paramagnetic state to a ferromagnetic state. Above the criti-
cal temperature, Yang-Lee zeros of the canonical partition
function exist. It is found that in this case the Yang-Lee
circle theorem holds. The circle theorem asserts that a mag-
netic phase transition is possible onlytat 0, which is con-
sistent with the exact solution. Below the critial temperature,
in the thermodynamic limit, no Yang-Lee zeros exist. For
d=1 and 2, the circle theorem holds in the whole range of
temperature.

Let us compare our model with ferromagnetic lattice
models, such as the Ising model. The Ising model is de-
scribed by a canonical ensemble. Our model is di-scribed by
a grand canonical ensemble and also by a canonical en-
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semble. The zeros of the canonical partition function of thecanonical partition function of our model exist. Furthermore,
ferromagnetic Ising model exist, either above or below thehe magnetic phase transition in the ferromagnetic Ising

critical temperature. The thermodynamic properties are deModel is related to the Yang-Lee singularithe positive
real Yang-Lee zergs Above the critical temperature, the

termined by Yang-Lee zeros. In the grand canonical en- X s .
semble, no Yang-Lee zeros of the grand partition function o agnetic ph_ase transition In our model is also related to the
' ang-Lee singularity{the positive real Yang-Lee zeros of

our model exist. In the canonical ensemble, above the critic (N)]. However, below the critical temperature, the mag-
temperature of the Bose-Einstein condensation, the zeros ggtic phase transition is related to the Bose-Einstein singu-
the canonical partition function of our model exist. The ther-|arity ([1—x exp(~Bp%2m)] 1= whenx=1(H=0) and
modynamic properties are determined by Yang-Lee zerog=0). The asymmetry of the singularity property is caused

However, below the critical temperature, no zeros of theby ideal Bose-Einstein condensation.
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